Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38540752

RESUMO

Capitellacin is the ß-hairpin membrane-active cationic antimicrobial peptide from the marine polychaeta Capitella teleta. Capitellacin exhibits antibacterial activity, including against drug-resistant strains. To gain insight into the mechanism of capitellacin action, we investigated the structure of the peptide in the membrane-mimicking environment of dodecylphosphocholine (DPC) micelles using high-resolution NMR spectroscopy. In DPC solution, two structural forms of capitellacin were observed: a monomeric ß-hairpin was in equilibrium with a dimer formed by the antiparallel association of the N-terminal ß-strands and stabilized by intermonomer hydrogen bonds and Van der Waals interactions. The thermodynamics of the enthalpy-driven dimerization process was studied by varying the temperature and molar ratios of the peptide to detergent. Cooling the peptide/detergent system promoted capitellacin dimerization. Paramagnetic relaxation enhancement induced by lipid-soluble 12-doxylstearate showed that monomeric and dimeric capitellacin interacted with the surface of the micelle and did not penetrate into the micelle interior, which is consistent with the "carpet" mode of membrane activity. An analysis of the known structures of ß-hairpin AMP dimers showed that their dimerization in a membrane-like environment occurs through the association of polar or weakly hydrophobic surfaces. A comparative analysis of the physicochemical properties of ß-hairpin AMPs revealed that dimer stability and hemolytic activity are positively correlated with surface hydrophobicity. An additional positive correlation was observed between hemolytic activity and AMP charge. The data obtained allowed for the provision of a more accurate description of the mechanism of the oligomerization of ß-structural peptides in biological membranes.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Poliquetos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Dimerização , Micelas , Detergentes , Espectroscopia de Ressonância Magnética , Termodinâmica
2.
Mar Drugs ; 21(12)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38132960

RESUMO

Marine polychaetes represent an extremely rich and underexplored source of novel families of antimicrobial peptides (AMPs). The rapid development of next generation sequencing technologies and modern bioinformatics approaches allows us to apply them for characterization of AMP-derived genes and the identification of encoded immune-related peptides with the aid of genome and transcriptome mining. Here, we describe a universal bioinformatic approach based on the conserved BRICHOS domain as a search query for the identification of novel structurally unique AMP families in annelids. In this paper, we report the discovery of 13 novel BRICHOS-related peptides, ranging from 18 to 91 amino acid residues in length, in the cosmopolitan marine worm Heteromastus filiformis with the assistance of transcriptome mining. Two characteristic peptides with a low homology in relation to known AMPs-the α-helical amphiphilic linear peptide, consisting of 28 amino acid residues and designated as HfBRI-28, and the 25-mer ß-hairpin peptide, specified as HfBRI-25 and having a unique structure stabilized by two disulfide bonds-were obtained and analyzed as potential antimicrobials. Interestingly, both peptides showed the ability to kill bacteria via membrane damage, but mechanisms of their action and spectra of their activity differed significantly. Being non-cytotoxic towards mammalian cells and stable to proteolysis in the blood serum, HfBRI-25 was selected for further in vivo studies in a lethal murine model of the Escherichia coli infection, where the peptide contributed to the 100% survival rate in animals. A high activity against uropathogenic strains of E. coli (UPEC) as well as a strong ability to kill bacteria within biofilms allow us to consider the novel peptide HfBRI-25 as a promising candidate for the clinical therapy of urinary tract infections (UTI) associated with UPEC.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Camundongos , Peptídeos Catiônicos Antimicrobianos/química , Escherichia coli/genética , Transcriptoma , Aminoácidos/genética , Antibacterianos/farmacologia , Mamíferos/metabolismo
3.
Pharmaceutics ; 15(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37631261

RESUMO

Protegrin-1 (PG-1) is a cationic ß-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central ß-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal ß-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design.

4.
Membranes (Basel) ; 13(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37103865

RESUMO

Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a modest toxicity toward mammalian cells attract much attention as new templates for the development of antibiotic drugs. However, a comprehensive understanding of mechanisms of bacterial resistance development to PrAMPs is necessary before their clinical application. In this study, development of the resistance to the proline-rich bovine cathelicidin Bac71-22 derivative was characterized in the multidrug-resistant Escherichia coli clinical isolate causing the urinary tract infection. Three Bac71-22-resistant strains with ≥16-fold increase in minimal inhibitory concentrations (MICs) were selected by serially passaging after four-week experimental evolution. It was shown that in salt-containing medium, the resistance was mediated by inactivation of the SbmA transporter. The absence of salt in the selection media affected both dynamics and main molecular targets under selective pressure: a point mutation leading to the amino acid substitution N159H in the WaaP kinase responsible for heptose I phosphorylation in the LPS structure was also found. This mutation led to a phenotype with a decreased susceptibility to both the Bac71-22 and polymyxin B. Screening of antimicrobial activities with the use of a wide panel of known AMPs, including the human cathelicidin LL-37 and conventional antibiotics, against selected strains indicated no significant cross-resistance effects.

5.
Mar Drugs ; 20(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005520

RESUMO

In recent years, new antibiotics targeting multidrug resistant Gram-negative bacteria have become urgently needed. Therefore, antimicrobial peptides are considered to be a novel perspective class of antibacterial agents. In this study, a panel of novel BRICHOS-related ß-hairpin antimicrobial peptides were identified in transcriptomes of marine polychaeta species. Two of them-abarenicin from Abarenicola pacifica and UuBRI-21 from Urechis unicinctus-possess strong antibacterial potential in vitro against a wide panel of Gram-negative bacteria including drug-resistant strains. Mechanism of action assays demonstrate that peptides disrupt bacterial and mammalian membrane integrity. Considering the stronger antibacterial potential and a low ability of abarenicin to be bound by components of serum, this peptide was selected for further modification. We conducted an alanine and arginine scanning of abarenicin by replacing individual amino acids and modulating hydrophobicity so as to improve its antibacterial potency and membrane selectivity. This design approach allowed us to obtain the Ap9 analog displaying a high efficacy in vivo in the mice septicemia and neutropenic mice peritonitis models. We demonstrated that abarenicin analogs did not significantly induce bacterial resistance after a four-week selection experiment and acted on different steps of the biofilm formation: (a) killing bacteria at their planktonic stage and preventing biofilm formation and (b) degrading pre-formed biofilm and killing embedded bacteria. The potent antibacterial and antibiofilm activity of the abarenicin analog Ap9 with its high efficacy in vivo against Gram-negative infection in mice models makes this peptide an attractive candidate for further preclinical investigation.


Assuntos
Poliquetos , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias , Biofilmes , Bactérias Gram-Negativas , Mamíferos , Camundongos , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
6.
Membranes (Basel) ; 12(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35629841

RESUMO

Over recent years, a growing number of bacterial species have become resistant to clinically relevant antibiotics. Proline-rich antimicrobial peptides (PrAMPs) having a potent antimicrobial activity and a negligible toxicity toward mammalian cells attract attention as new templates for the development of antibiotic drugs. Here, we mined genomes of all living Camelidae species and found a novel family of Bac7-like proline-rich cathelicidins which inhibited bacterial protein synthesis. The N-terminal region of a novel peptide from the alpaca Vicugna pacos named VicBac is responsible for inhibition of bacterial protein synthesis with an IC50 value of 0.5 µM in the E. coli cell-free system whereas the C-terminal region allows the peptide to penetrate bacterial membranes effectively. We also found that the full-length VicBac did not induce bacterial resistance after a two-week selection experiment, unlike the N-terminal truncated analog, which depended on the SbmA transport system. Both pro- and anti-inflammatory action of VicBac and its N-terminal truncated variant on various human cell types was found by multiplex immunoassay. The presence of the C-terminal tail in the natural VicBac does not provide for specific immune-modulatory effects in vitro but enhances the observed impact compared with the truncated analog. The pronounced antibacterial activity of VicBac, along with its moderate adverse effects on mammalian cells, make this molecule a promising scaffold for the development of peptide antibiotics.

7.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323465

RESUMO

Among the most potent and proteolytically resistant antimicrobial peptides (AMPs) of animal origin are molecules forming a ß-hairpin structure stabilized by disulfide bonds. In this study, we investigated the mechanism of action and therapeutic potential of the ß-hairpin AMP from the marine polychaeta Capitella teleta, named capitellacin. The peptide exhibits a low cytotoxicity toward mammalian cells and a pronounced activity against a wide range of bacterial pathogens including multi-resistant bacteria, but the mechanism of its antibacterial action is still obscure. In view of this, we obtained analogs of capitellacin and tachyplesin-inspired chimeric variants to identify amino acid residues important for biological activities. A low hydrophobicity of the ß-turn region in capitellacin determines its modest membranotropic activity and slow membrane permeabilization. Electrochemical measurements in planar lipid bilayers mimicking the E. coli membrane were consistent with the detergent-like mechanism of action rather than with binding to a specific molecular target in the cell. The peptide did not induce bacterial resistance after a 21-day selection experiment, which also pointed at a membranotropic mechanism of action. We also found that capitellacin can both prevent E. coli biofilm formation and destroy preformed mature biofilms. The marked antibacterial and antibiofilm activity of capitellacin along with its moderate adverse effects on mammalian cells make this peptide a promising scaffold for the development of drugs for the treatment of chronic E. coli infections, in particular those caused by the formation of biofilms.


Assuntos
Antibacterianos , Peptídeos Antimicrobianos , Poliquetos/química , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/isolamento & purificação , Peptídeos Antimicrobianos/farmacologia , Organismos Aquáticos/química , Biofilmes/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Fibroblastos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Conformação Proteica
8.
Mar Drugs ; 18(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291782

RESUMO

Endogenous antimicrobial peptides (AMPs) are evolutionary ancient molecular factors of innate immunity that play a key role in host defense. Among the most active and stable under physiological conditions AMPs are the peptides of animal origin that adopt a ß-hairpin conformation stabilized by disulfide bridges. In this study, a novel BRICHOS-domain related AMP from the marine polychaeta Capitella teleta, named capitellacin, was produced as the recombinant analogue and investigated. The mature capitellacin exhibits high homology with the known ß-hairpin AMP family-tachyplesins and polyphemusins from the horseshoe crabs. The ß-hairpin structure of the recombinant capitellacin was proved by CD and NMR spectroscopy. In aqueous solution the peptide exists as monomeric right-handed twisted ß-hairpin and its structure does not reveal significant amphipathicity. Moreover, the peptide retains this conformation in membrane environment and incorporates into lipid bilayer. Capitellacin exhibits a strong antimicrobial activity in vitro against a wide panel of bacteria including extensively drug-resistant strains. In contrast to other known ß-hairpin AMPs, this peptide acts apparently via non-lytic mechanism at concentrations inhibiting bacterial growth. The molecular mechanism of the peptide antimicrobial action does not seem to be related to the inhibition of bacterial translation therefore other molecular targets may be assumed. The reduced cytotoxicity against human cells and high antibacterial cell selectivity as compared to tachyplesin-1 make it an attractive candidate compound for an anti-infective drug design.


Assuntos
Poliquetos/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Animais , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Sistema Livre de Células , Desenho de Fármacos , Proteínas de Fluorescência Verde , Hemólise/efeitos dos fármacos , Caranguejos Ferradura , Humanos , Bicamadas Lipídicas , Micelas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Conformação Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...